Responsible AI in automated credit scoring systems

نویسندگان

چکیده

In the last few years, Artificial Intelligence (AI) has achieved a notable momentum that, may deliver expectations over many application sectors across field. For this to occur, expert systems and rule-based models need overcome limitation of fairness interpretability. Paradigms underlying problem fall within so-called explainable AI (XAI) This report presents work on German credit card dataset challenges fairness, bias in return, deem machine learning giving responsible expectation. is defined as practice. Since we dealt with, classify score user good or bad, using fair ML modelling approach, key metric interest F1-score reduce share misclassifications. It observed that hyper parameter tuned XGBoost model (GC2) gives optimal performance terms both F1-score, accuracy for case gender age protected variable through Disparate Impact Remover, pre-processing mitigation technique. The same deployed Heroku Flask API (for age). Analysis (DIA) H2O.AI helped identify optimum threshold levels at which metrics are legally acceptable/permissible gender. Overall, responsibility explainability have been established considered.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using DEA for Classification in Credit Scoring

Credit scoring is a kind of binary classification problem that contains important information for manager to make a decision in particularly in banking authorities. Obtained scores provide a practical credit decision for a loan officer to classify clients to reject or accept for payment loan. For this sake, in this paper a data envelopment analysis- discriminant analysis (DEA-DA) approach is us...

متن کامل

Small Business Credit Scoring and Credit Availability

U.S. commercial banks are increasingly using credit scoring models to underwrite small business credits. This paper discusses this technology, evaluates the research findings on the effects of this technology on small business credit availability, and links these findings to a number of research and public policy issues. JEL classification: G21, G28, G34, L23

متن کامل

Credit Risk Scoring Models

Credit scoring models play a fundamental role in the risk management practice at most banks. They are used to quantify credit risk at counterparty or transaction level in the different phases of the credit cycle (e.g. application, behavioural, collection models). The credit score empowers users to make quick decisions or even to automate decisions and this is extremely desirable when banks are ...

متن کامل

Credit scoring, statistique et apprentissage

Les accords dits « Bâle 2 » sur la solvabilité des banques ont remis au goût du jour les techniques de scoring en imposant aux banques de calculer des probabilités de défaut et le montant des pertes en cas de défaut. Nous présentons dans cet exposé les principales techniques utilisées et les problèmes actuels. Le terme credit scoring désigne un ensemble d’outils d’aide à la décision utilisés pa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: AI and ethics

سال: 2022

ISSN: ['2730-5953', '2730-5961']

DOI: https://doi.org/10.1007/s43681-022-00175-3